Last Updated: August 2, 2022

Due to the continuous development of light source and detection methods we see more and more new applications where detection of materials, gasses, temperatures, pressures, stress, vibration etc. is achieved by optics. Optical fibers are usually the extension media between light source and detector.
What makes optical fiber that special is often asked. We know that an optical fiber is composed of a very thin glass rod. The glass rod contains two parts, the core and the surrounding layer (cladding). By melting the glass rod in a draw tower, the optical fiber is extruded. By using different techniques in the manufacturing process of the glass rod, manufacturers are able to extrude fibers with different characteristics for their specific application.
How does it work? In most applications light is injected into the core of the glass fiber and follows the physical patch of the fiber due to the internal reflection between the core/cladding edge which acts as a mirror. When the fiber core is smaller in diameter, less of core/cladding reflection will occur allowing the light to transport more in a single mode (often compared with a tunnel vision). This allows faster transmission rates. With larger core fiber there is more reflections and dispersion however it offers other advantage transmission density and less of mechanical alignment precision on light source and detector.
Follow Fiber Optic Center @FiberOpticCntr